Method 1: Dataset importing from web link
Example:
links =
"https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
# header = False because we do not need the header in machine learning
read.csv(url(links),header = FALSE)
# Display the datasets in tab.
View(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
-
-
-
149 6.2 3.4 5.4 2.3 virginica
150 5.9 3.0 5.1 1.8 virginica
Method 2: Dataset importing the from package
Example:
print(iris)
Output:
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
-
-
-
149 6.2 3.4 5.4 2.3 virginica
150 5.9 3.0 5.1 1.8 virginica
Method 3: Dataset importing the from a download dataset file
Example:
File -> Import Dataset -> from text base -> choose file and then import
# Display the dimension of a dataset
print(dim(iris))
Output:
V1 V2 V3 V4 V5
1 5.1 3.5 1.4 0.2 Iris-setosa
2 4.9 3.0 1.4 0.2 Iris-setosa
--
-
149 6.2 3.4 5.4 2.3 Iris-virginica
150 5.9 3.0 5.1 1.8 Iris-virginica
=> Add / modify the data frame name
Example:
colnames(iris) = c("C-1", "C-2","C-3", "C-4", "Item name")
View(iris)
=> Handling Missing value in dataset, and denoted by R is -NA
Example:
df = data.frame(c(1,2,3,4) , c(5,6,NA,NA) )
Output:
c.1..2..3..4. c.5..6..NA..NA.
1 1 5
2 2 6
3 3 NA
4 4 NA
=>Check the dataset and any missing entry.
Example:
is.na(df)
Output:
c.1..2..3..4. c.5..6..NA..NA.
[1,] FALSE FALSE
[2,] FALSE FALSE
[3,] FALSE TRUE
[4,] FALSE TRUE
=>checks the entire datset for any of the entry is TRUE
Example
any(is.na(df))
Output:
[1] TRUE
=> Display the total sum of missing value in a dataset
Example
sum(is.na(df))
View(df)
Output:
[1] 2
You may also interested in:
An Introduction to language R
Tutorial # 1.Data Type & Variable Declaration
Tutorial # 2.Operators
Tutorial # 3.Vector & Element Access
Tutorial # 4.Matrix
Tutorial # 5.Data Frame
Tutorial # 2.Operators
Tutorial # 3.Vector & Element Access
Tutorial # 4.Matrix
Tutorial # 5.Data Frame
Tutorial # 6.Arrays
Tutorial # 7.Lists
Tutorial # 8.Factors
Tutorial # 9.Data import
Tutorial # 10.Machine Learning
Tutorial # 11.Visualization
Tutorial # 7.Lists
Tutorial # 8.Factors
Tutorial # 9.Data import
Tutorial # 10.Machine Learning
Tutorial # 11.Visualization
0 Comments